Sapphire: Experiences in Scientific Data Mining

Chandrika Kamath

Lawrence Livermore National Laboratory, Livermore, CA 94551

E-mail: kamath2@11nl.gov

Abstract.

The size and the complexity of the data from scientific simulations, observations, and
experiments are becoming a major impediment to their analysis. To enable scientists to address
this problem of data overload and benefit from their improved data collecting abilities, the
Sapphire project team has been involved in the research, development, and application of
scientific data mining techniques for nearly a decade. In this paper, I first describe the Sapphire
system architecture which was motivated by the needs of a diverse set of applications. Then,
using examples from different domains, I discuss our experiences in mining science data and
some of the challenges we faced in analyzing data ranging from a megabyte to several terabytes.

1. Introduction

Over the last ten years, the Sapphire project team (https://computation.llnl.gov/casc/sapphire)
at Lawrence Livermore National Laboratory, has been involved in the research, development,
and application of scientific data mining techniques to various problems involving data from
observations, experiments, and simulations. This paper summarizes our approach to addressing
the diverse needs of applications and describes some of the lessons learned in the analysis of
scientific data sets.

At the start of the project, discussions with domain scientists indicated that we needed
to support a multitude of requirements. The raw data available for analysis was in the form
of images; structured or unstructured mesh data with physical variables at each mesh point;
or time-series data collected by different sensors. The type of analysis required was problem
dependent, and ranged from identifying and characterizing structures of interest to classifying
structures belonging to a certain category or class. Image data was often noisy, with the noise
statistics varying with the sensors used to collect the data. There was also interest in building
predictive models, where each experiment or simulation was characterized by several input and
output variables, and the goal was to predict the output variables for a given set of input
variables, or to identify key input variables to predict the values of the output variables.

To support these diverse requirements, we designed and built a software toolkit (Figure 1) [1]
with separate modules for different tasks such as de-noising, background subtraction to identify
moving objects in video, dimension reduction to identify key characteristics of objects, pattern
recognition for clustering, classification, and so on. Recognizing that for each task, different
methods were likely to be appropriate based on the data, we used object-oriented techniques to
provide a uniform interface to these algorithms. The focus on modularity also carried over to
the packaging of the software, with different libraries supporting different tasks, allowing a user
to link to only what is necessary for the solution of their problem.

RDEB: Data Store
De-noise data Eeaiues Decision trees
Background- Meural Networks
subtraction [T+ Data T
b| Mdentify objects TomE SWMs
v | Extract features | | k-nearest i
! neighbors Display
i 1) 1 Fatterns
H Clustering : _
Sample data | ! Evolutignary
! Fuse data ' MNommalization algorithms H
Multi-resolution- | | Dimensior- Tracking
analysis : reduction
L O S O S SN H .
Sapphire Public Domain Sapphire & Domain
Cl Saoftware I:l Software I:l Software
—— Components linked by Python ~ e=eee User Input &
Feedback

Figure 1. Sapphire system architecture. The compute-intensive parts are highlighted in blue,
the domain specific parts in yellow, and the public-domain data store in pink.

Sapphire software incorporates several algorithm advances resulting from our research. It
is written in C++ and its modularity, as well as the use of object-oriented design concepts,
allow the easy addition of new algorithms as needed. A data set is usually analyzed by linking
several modules together, either through a driver code in C++ or via Python. We have applied
Sapphire software to a broad range of problems in different domains, including

e Classification of bent-double galaxies in observational astronomy data [2].

e Separating signals, such as El Nino and volcano signals, from surface temperature data
obtained from climate simulations [3].

e Similarity-based object retrieval in two- and three-dimensional simulation data [4].

e Detection of human settlements in satellite images [5].

o Identification of key features associated with edge-harmonic oscillations (EHOs) in sensor
data from a tokamak [6].

e Detection and tracking of moving objects in video sequences [7, 8].

e Estimating missing features in multi-media information retrieval [9].

e Comparing simulation and experimental data for code validation [10].

e Characterizing and tracking bubbles and spikes in three-dimensional simulations of the
Rayleigh Taylor instability [11, 12]

o Classification of orbits in Poincaré plots [13]

e Detection of blobs in experimental images from fusion plasma [14].

Using examples from three problems, one each in observational, experimental, and simulation
data, I next describe in more detail some of the issues and challenges in mining scientific data.

2. Classification of bent-double galaxies

Our goal in the analysis of the data from the FIRST survey (http://sundog.stsci.edu) was
to develop a classifier to discriminate between bent-double and non-bent double galaxies [2].
Bent-double galaxies are of interest to astronomers as they indicate the presence of clusters of
galaxies. The astronomers first identified bent-doubles visually in the images and then cross-
validated potential bent-doubles with other astronomical surveys. This was not only subjective,
but also became infeasible as the survey grew to nearly a million galaxies. Figure 2 shows

(a) (b) (c) (d) ()

2y -f_' ‘\\)V

(f) () (h) (i) ()
Figure 2. Example radio sources from FIRST (a)-(c) bent-doubles. (d)-(f) non-bent doubles
(g)-(j) complex galaxies. Note the similarity between (b) and (d).

¢
.

some examples of bent-double and non-bent-double galaxies, as well as some galaxies whose
morphology is complex enough to be of interest to the astronomers.

Data from the FIRST survey are available in two forms — image maps and a catalog. The
catalog is obtained by processing an image map and fitting two-dimensional elliptic Gaussians
to each galaxy. FEach entry in the catalog describes a single Gaussian and includes features
such as the RA and Dec (i.e. coordinates) for the center of the Gaussian, the lengths of
the major and minor axes, the peak flux, and the position angle of the major axis (degrees
counterclockwise from North). Due to an upper limit on the number of Gaussians used, galaxies
with a complex morphology are not approximated well by the catalog. However, for simpler
galaxies, the astronomers believed that it made sense to focus on the catalog in our analysis.

Our first task was to identify the catalog entries which formed a single galaxy. Any Gaussians
within 0.96 arc minutes of each other were considered to belong to one galaxy. If there were 4 or
more such Gaussians, the galaxy was considered complex enough to be of interest and therefore
flagged as such. Galaxies with only a single Gaussian were ignored as they were unlikely to be
“doubles”, bent or otherwise. We then focused on the two- and three-entry galaxies separately
as they are described by different features, resulting in feature vectors of different length.

Once the catalog entries forming a galaxy were identified, they were used to extract features
representing the galaxy. Our work on the extraction of features is covered in detail elsewhere [2,
15,16]. In this paper, I focus on the challenges encountered when we use the features to classify
the galaxies as bent-doubles or non-bent-doubles. As an example, I consider three-entry galaxies
and decision tree classifiers.

We faced two major issues in classification - one was the size and quality of the training
data and the other was the accuracy of the results. The training data generated manually by
the astronomers was relatively small and unbalanced, with 167 bent-doubles and 28 non-bent
doubles. Our goal was to use these 195 galaxies to build a decision tree model (with at most
10% error rate) which could automatically classify 15,000 three-entry galaxies without a class
label.

We first used our original set of 195 training examples to refine the set of features until the
error rate on 10 runs of 10-fold cross validation dropped below 10%. In the process, we removed
features which were not very discriminating and identified more robust techniques to extract
the features so that they were insensitive to small changes in the data.

We next used the tree to classify galaxies which had not been assigned a label. Our

Method Gini Gain Ratio Info Gain
No Pruning Pruning | No Pruning Pruning | No Pruning Pruning

Single tree 22.79 19.77 22.62 19.83 22.77 19.71
(0.31) (0.18) (0.27) (0.15) (0.39) (0.41)
Histogram-based 21.73 20.46 20.85 18.81 22.56 20.96
single tree (0.34) (0.29) (0.39) (0.17) (0.32) (0.39)
Histogram-based 18.69 18.27 18.10 18.02 18.22 18.42
10 trees (0.28) (0.30) (0.16) (0.22) (0.18) (0.34)
Sampling-based 18.21 17.31 17.83 17.48 17.79 17.58
10 trees (50%) (0.23) (0.17) (0.20) (0.15) (0.19) (0.18)
Adaboost 21.87 20.40 22.37 22.56 20.50 20.75
10 trees (0.42) (0.45) (0.53) (0.47) (0.45) (0.43)
Bagging 19.40 18.35 18.98 18.12 18.98 18.52
10 trees (0.28) (0.34) (0.34) (0.26) (0.36) (0.35)
ArcX4 20.48 20.12 21.67 22.48 21.06 19.77
10 trees (0.39) (0.20) (0.35) (0.41) (0.22) (0.37)

Table 1. Cross-validation error (std error) using different classification methods, using 485
instances

original plan was to have the astronomers validate these class labels. Though we built a simple
interactive tool to make the process easy, we found that it was still rather tedious, subjective,
and inconsistent as the labels assigned by an astronomer were subject to the drift common to
human labelers. Therefore, we were able to validate only 290 galaxies, of which 92 were bents
and 198 non-bents, to compensate for the original unbalanced data.

We evaluated the performance of various tree-based classification algorithms on this new
training set of 485 galaxies. These algorithms include the commonly used techniques of
Adaboost, bagging, and ArcX4, as well as two methods we proposed, called ASPEN, for
Approximate Splitting for Ensembles. One of these methods uses a histogram instead of sorting
all the feature values at each node, and the other uses a sample of the instances at each node
to make the decision. We consider three splitting criteria - Gini, Gain ratio and Info Gain [17].
Table 1 presents the cross-validation error (and standard error) of 10 runs of 10-fold cross-
validation for this data both with and without pruning. We observe that pruning reduces the
error rate by avoiding overfitting, which is to be expected. Also, the use of ensemble methods,
where more than one tree is created from the same training set using randomization and the
results combined using voting, work better. This is again to be expected as decision trees have
high variance, which is reduced through the randomization and voting. The best results are
obtained with the two ASPEN approaches, followed closely by bagging.

Interestingly, we also observe that the error rate is now closer to 20% though the tree built
with the original training data had an error rate of less than 10%. This too is expected as
the refinement of features to reduce the error rate was done for the original training set which
has a disproportionate number of bent-doubles. It is unlikely that the same set of features
would be the best for the enhanced training set. In addition, the 290 galaxies added after
validation constituted mainly galaxies which we (non-astronomers) found it difficult to classify.
Unfortunately, the astronomers too had problems with these galaxies, either disagreeing on a
label or being inconsistent with their labeling when shown the same galaxy on different occasions.

Ideally, we should have again refined the features for the new training set to see if we
could reduce its error. However, as we looked more closely at the galaxies which were
being misclassified, we found that these were the difficult to classify galaxies, where even the

astronomers disagreed on the class label. This suggested that there was a limit to the accuracy
we could expect given the quality and size of the training data. Fortunately, the astronomers
were interested in a ranked list of bent-double galaxies as they wanted to schedule telescope
time to further study these galaxies. Therefore, we used the different algorithms to rank order
the bent-doubles, with a galaxy identified as bent-double by n algorithms being ranked higher
than one classified as bent-double by m algorithms, if m < n. This allowed the astronomers to
prioritize the galaxies which they wanted to investigate further via a telescope.

This classification step in the identification of bent-double galaxies illustrates several
challenges. First, the training data may be small, unbalanced, and of poor quality, with mis-
labeled instances. We must therefore be careful in interpreting the accuracy results. Further,
achieving high accuracy may not necessarily be the goal of the scientists; given the subjectiveness
and inconsistency in labeling, it is not clear if high accuracy can always be achieved or is desired.

3. Identification of key features for EHOs

Sometimes the goal in a scientific application is not to build a predictive model, but to discover
a set of features that may provide insights into the phenomena of interest. In our work in
the analysis of sensor data from fusion experiments at the DIII-D tokamak, we were interested
in determining which sensor variables were key to the presence of edge-harmonic oscillations
(EHOs) in the tokamak. The preferred mode of operation of a tokamak is the high-confinement
mode. This comes at a significant cost due to effects of edge localized modes (ELMs) which can
cause rapid erosion or even destruction of some components. Recently, a “quiescent H-mode”
of operation, without ELMs, has been observed in the DIII-D tokamak. Associated with this
mode is a phenomena known as the edge harmonic oscillation (EHO), which can be identified
both visually and automatically using simple rules derived from the visual analysis.

Our goal in this analysis was to identify which of the variables being measured by different
sensors were relevant to the presence of EHOs. First, with input from the physicists, we extracted
the values of 37 candidate variables that describe approximately 700 experiments, each lasting
about 6 seconds. Each 50 ms time window of each experiment received a binary label (high/low
EHO-ness) using the program that detects EHOs. Next, we preprocessed the data to discard the
time windows that contain at least one missing value caused by either an inactive sensor or data
from all sensors not being sampled at the same rate. Next, a visual examination of box-plots
and histograms of the data revealed many outliers. Using the median value of each variable
in each time window eliminated some outliers, but since many still remained, we decided to
eliminate the time windows that contained at least one variable in the top or bottom percentile
of its range. After the preprocessing, our training set consisted of 41818 instances. Note that
unlike the problem of classification of bent-double galaxies, our training data for this problem
is not small as it was generated using automated techniques.

The key challenge in this problem was the validation of the results from feature selection
algorithms. The scientists did not have any preconceived notion of what features were likely
to be important; therefore, we used several approaches to gain confidence in the results. First,
as described earlier, we improved the quality of the data so our results were not skewed by the
presence of outliers. Second, we tried several different algorithms for feature selection. While
we did not expect all techniques to give identical results, we would trust the results more if
several techniques selected the same set of features as important. We did not consider one of
the most commonly used techniques, namely, principal component analysis (PCA), as it linearly
transforms the data into a lower dimensional space, whereas the scientists were interested in
a subset of the original 37 features. Third, we introduced a “sentinel” random feature that is
uniformly distributed in the interval [0,1]. The rank of this feature was another measure of how
much we could trust the results from an algorithm.

We considered the following feature selection techniques:

e The PCA filter [18] is a technique derived from the PCA. It first performs a PCA on
the data. Then, starting with the eigenvector corresponding to the smallest eigenvalue, it
discards the variable with the largest coefficient (in absolute value) in that vector. It then
proceeds to the eigenvector corresponding to the next smallest eigenvalue and discards the
variable with the largest coefficient, among the variables not discarded earlier. The process
is continued until all variables are ranked.

e The distance filter uses the Kullback-Leibler (KL) distance between histograms of feature
values to estimate how well a feature can separate the data into the two classes, EHOs and
non-EHOs. We first discretize the numeric features using b = /| D[/2 equally-spaced bins,
where |D| is the size of the training data. The histograms are normalized to estimate the
probability, p;(d = i|n), that the j-th feature takes a value in the i-th bin of the histogram,
given a class n. For each feature j, we calculate the class separability as

Aj = Z Z(Sj(’lﬂ,ﬂ),

m=1n=1

where ¢ is the number of classes (2, in our case) and ¢;(m,n) is the KL distance between
the distributions corresponding to classes m and n for feature j:

b .

, pi(d = ilm)

di(m,n)=>» pi(d=ilm)log | =———].

The features are ranked by sorting them in descending order of the distances A; as a good
feature will have a large value of the KL distance.

e The Chi-square filter ranks features by sorting them in descending order of Chi-square
statistics computed from their contingency tables. The contingency tables have one row for
every class and the columns correspond to possible values of the feature. Numeric features
are represented by histograms, so the columns of the contingency table are the histogram
bins. The Chi-square statistic for feature j is

2
2 (0i —)
5=y, —,

- €;
i 1

where the sum is over all the cells in the contingency table, o; stands for the observed value,
and e; is the expected frequency of items.

e The stump filteris based on the approach used in decision trees to determine the split at each
node. The filter only considers the split at the root node of the tree which is based on all
the data. Each feature is examined in turn and a split found which minimizes (maximizes)
an impurity (purity) measure. We rank the features using the Gini index [17],

()

where n is the total number of instances, ny is the number of instances in branch b, and ng,.
is the number of instances of class ¢ in branch b.

e The boosting approach is an iterative method where in each iteration, the algorithm ranks
the features that have not been selected so far and adds the highest-ranking feature to the
feature subset. Then, a classifier (naive Bayes, in our case) is trained, and weights assigned
to the examples so that misclassified ones have higher weight. These weights are used in
the KL distance method to rank the features unselected thus far.

0.3

PCA Filter —+—
ChiSquare ------
0.28 b+ Stump 8
0.26
024 | "7k g
— m \‘ X
e |\
= D\\ *‘»'E@DDDDDDDD
0.22 " % a g
| ' S| g8 e
\ s o N o i = R
\\ L % g2 **;;%* *‘/A,@—Q"@"E’E @ ®00
02| | ﬁ *
\ /
|
|
S L
0418 L \// PN i
0.16
0 5 10 15 20 25 30 35

Features

Figure 3. Error rates varying with the number of features for the fusion data. The large dots
represent the rankings of the random noise feature.

Figure 3 presents the error rates of a naive Bayes classifier trained on increasingly large
feature subsets [6]. The PCA filter produced a compact feature subset that results in the lowest
classification error of 17.3% compared to 20.9% obtained with all the features. Note however,
that the PCA filter ranks the noise feature (indicated by the red dot) highly. This would lead us
to doubt the features selected by this method, especially as the features ranked high by the PCA
filter are ranked much lower by other methods. The remaining four methods are remarkably
consistent in the features they select as important - six features were ranked in the top ten by
four methods and an additional three were ranked in the top ten by three methods.

This example illustrates that the quality of the data must be checked before we start the
analysis and we must use caution in our interpretation of the results. Further, the use of more

than one analysis method is often necessary when the phenomena being analyzed is poorly
understood.

4. Counting bubbles and spikes in Rayleigh-Taylor simulations

I next describe a problem where the phenomena being simulated is not only poorly understood,
but the data set is so large that one has to be ingenious in solving the problem. Our goal was to
identify, count, and track coherent structures known as bubbles and spikes in three-dimensional
simulations of the Rayleigh-Taylor instability. This occurs when an initially perturbed interface
between a heavier fluid on top of a lighter fluid is allowed to grow under the influence of gravity.
The fingers of lighter fluid penetrate the heavier fluid in what are referred to as ‘bubbles’,
while ‘spikes’ of heavier fluid move into the lighter fluid. With time, these structures, which are
initially distinct, continue to evolve; in the process, they may grow, split, merge with surrounding
structures, or shrink in size relative to other structures which grow and overtake them.

Our work in using image analysis to count and track the bubbles and spikes is documented
elsewhere [11,12]. Here, I focus on two aspects of the work, namely, the exploitation of domain-
specific information and the sensitivity of the results to parameters in the analysis algorithms.

As an example, I will use the larger of two data sets we analyzed, which was obtained using
a direct numerical simulation on a three-dimensional computational domain in the form of a
cube with uniformly-spaced grid points in the z, y, and z directions, and Az = Ay = Az. This
allowed us to consider the domain as a three-dimensional image, with a grid-point corresponding

Figure 4. A 300 x 300 sub-image of the top view of the bubble surface illustrating the (a)
height of the surface from original fluid interface; (b) pressure; (¢) z-velocity;(d) y-velocity; (e)
z-velocity; (f) magnitude of the x-y velocity.

to a pixel. There are 3072 grid points along each dimension; the simulation is run for 248 time
steps and five variables are output in single precision at each time step: the pressure, the
density, and the z, y, and z velocities at each grid point, resulting in an 80 terabyte data set.
Note that unlike an image, the data at each grid point are floating point values, not integers.
The simulation was run on a parallel machine using 16384 processors at early time and 65536
processors at late time. It took 17 days to complete, accounting for a total of 2303 single-CPU
years. The 30723 grid points were partitioned among the processors in vertical columns.

The large size and the distributed nature of the data were not the only challenges faced in
the analysis of the data. A key issue was the lack of a precise definition for a bubble, especially
one that holds over all time. Our approach was to start with a small subset of the data at every
n-th time step, experiment with various algorithms and parameter settings, and then try the
best ones on ever larger subsets of the data.

We used a two-phase approach. In the first phase, we first converted the 3-D data into 2-D
by using a simple region-growing technique to identify the boundary of the bubbles (spikes) and
then considering the image formed by the top (bottom) view of this surface. In the second phase,
we counted the bubbles and spikes in these 2-D images. Figure 4 shows a 300 x 300 subset of
the full 3072 x 3072 images of the top view of various variables at the bubble boundary. These
include the height-map, which is the height of a point on the bubble surface relative to the
original interface; the pressure; the x—, y— and z— velocities; and the magnitude of the x-y
velocity. These images are at time step 50 in the simulation, where the initial perturbation has
grown to form clearly identifiable bubbles. As the bubbles grow, merge, split, and die off, their
shape changes considerably and it is no longer easy to identify the extent of each bubble.

We next applied image segmentation techniques to the data in Figure 4(a) to identify the
extent of each bubble, and thus obtain their count. We used a simple region-growing technique
which considers neighboring pixels with nearly the same height as forming a single region as
shown outlined in red in Figure 5 panel (a). Panel (b) shows the regions after cleanup to remove
small regions, merge regions completely within each other, and remove odd shaped regions.

We had also observed that the z-velocity at the bubble surface was negative on the left half
and positive on the right; similarly, the y-velocity was negative on the bottom and positive on
the top. So, combining the two images could identify the center region of a bubble. Figure 4(e)
shows the magnitude of the x-y velocity which is small (indicated by the dark pixels) at both
the center of a bubble as well as its perimeter. We could isolate the center pixels as the height
near the center did not change as rapidly as near the perimeter (see Figure 5(a)). The centroid
of these center pixels formed the tip of a bubble, as highlighted in green in Figure 5(c).

This exploitation of the domain information, led to a much faster algorithm for counting
bubble tips, taking only 8 seconds to process a 3072 x 3072 image in contrast with 2800 seconds
for the region-growing approach. As shown in [11], the results from several variants of both
approaches are very similar, building our confidence in the results.

For further verification, we considered the sensitivity of the results to the choice of parameters

Figure 5. The 300 x 300 height map image from Figure 4 showing the result of segmentation
using region growing (a) before and (b) after cleanup. (c) The magnitude of the z-y image with
the bubble tip indicated in green.

3-D region growing threshold range Bubble count range with variance approach

3.1
Lower bound ——

Bubble count -------
Upper bound -+
10000

20 1"

28 -

Threshold
Bubble count

27+ 1000 [~

26 -

25

1 1 1 1 1 1
0 50 100 150 200 10 100
Time step Time step

(a) (b)
Figure 6. (a) The values of the threshold used in phase I of bubble counting - the threshold

used in the analysis is shown in green, while the blue and red curves illustrate the range over
which we can vary the threshold without a large variation in the bubble counts, as shown in (b).

in our algorithms. In the second phase of the analysis, namely, the identification of bubbles in the
two-dimensional images, we could visually check that we were counting almost all the bubbles.
However, we also needed to confirm that the results of the first phase were not sensitive to
the choice of parameters. Our simple region growing algorithm used a single threshold on the
density variable. We varied the value of this threshold and observed how the bubble counts
changed when we used a fixed algorithm and set of parameters for phase 2. Since were working
with three-dimensional data, we conducted this study at select time steps. Figure 6 shows, in
green, the threshold we used in our analysis, and in blue and red, the range over which we could
change this threshold without a large change in the bubble counts. These plots show that small
changes in the threshold parameter do not result in large changes in the bubble counts.

This problem illustrates the challenges faced in analysis of massive data sets, especially when
the structures of interest in the data are poorly defined. It then becomes important to plan
the analysis carefully, exploiting domain information where possible, and conducting sensitivity
studies to gain confidence in the results.

5. Summary
In this paper, I described the work done by the Sapphire team in the analysis of scientific
data. Using three examples, I illustrated some of the challenges in scientific data mining and

our solution approaches. These include improving the quality of data to handle outliers and
unbalanced training data; using multiple algorithms and sensitivity analysis to gain confidence
in the results; and exploiting domain knowledge where possible to simplify the analysis, improve
the quality of the data, and increase the size of the training set.

Acknowledgments
I gratefully acknowledge the contributions of the Sapphire project team to both the
implementation of the software and the analysis of data from various applications. The domain
scientists graciously shared their data and expertise. The work was partially funded by the DOE
Office of Science SciDAC program, the DOE NNSA ASC program, and the LDRD program at
Lawrence Livermore National Laboratory.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07TNA27344.

References
[1] Kamath C 2006 Journal of Physics Conference Series, Volume 46 pp 500-504
[2] Kamath C, Cantu-Paz E, Fodor I and Tang N 2002 IEEE Computing in Science and Engineering 4 52—60
[3] Fodor I and CKamath 2003 Proceedings, Independent Component Analyses, Wavelets, and Neural Networks,
SPIE Proceedings, Volume 5102 (SPIE) pp 25-36
[4] Kamath C, Canti-Paz E, Cheung S C, Fodor I and Tang N 2005 Next Generation of Data Mining Applications
ed Kantardzic M and Zurada J (New York, NY: John Wiley) pp 211-232
[6] Kamath C, Sengupta S K, Poland D N and Futterman J A H 2003 Image Processing: Algorithms and Systems
II (Proceedings of SPIE/ISET Volume 5014) pp 270-280
[6] Canti-Paz E, Newsam S and Kamath C 2004 Proceedings of the SIGKDD International Conference on
Knowledge Discovery and Data Mining pp 788-793
[7] Cheung S C and Kamath C 2005 Furasip Journal on applied signal processing 14 2330-2340
[8] Kamath C, Gezahegne A, Newsam S and Roberts G M 2005 Image and Video Communications and
Processing, Proceedings of SPIE Volume 5685 pp 442453
[9] Bagherjeiran A, Love N S and Kamath C 2007 Proceedings, IEEE International Conference on Image
Processing, Volume II pp 233-236
[10] Kamath C and Miller P L 2007 IEEE International Conference on Image Processing, Volume III pp 525-528
[11] Kamath C, Gezahegne A and Miller P L 2006 Analysis of Rayleigh-Taylor instability, Part I: Bubble and
spike count Tech. Rep. UCRL-TR~223676 Lawrence Livermore National Laboratory
[12] Gezahegne A and Kamath C 2008 Proceedings, IEEE International Conference on Image Processing to
appear
[13] Bagherjeiran A and Kamath C 2006 Proceedings of the SIAM International Conference on Data Mining pp
574-579
[14] Love N S and Kamath C 2007 Proceedings, Applications of Digital Image Processing, XXX, SPIE Conference
6696
[15] Kamath C, Canti-Paz E, Fodor I and Tang N 2001 Data Mining for Scientific and Engineering Applications
ed Grossman R, Kamath C, Kegelmeyer W, Kumar V and Namburu R (Boston, MA: Kluwer) pp 95-114
[16] Fodor I K and Kamath C 2001 Computational Statistics and Data Analysis 41 91-122
[17] Breiman L, Friedman J, Olshen R A and Stone C 1984 Classification and Regression Trees (Boca Raton,
Florida: CRC Press)
[18] Joliffe I T 1973 Applied Statistics 22 21-31

