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 1. Introduction 
 

The overall goal of this multi-phased research project known as WindSENSE is to develop an 
observation system deployment strategy that would improve wind power generation forecasts. 
The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour 
ahead forecasts of wind speed at hub-height (~80 m). In this phase of the project the focus is on 
the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) 
wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge 
wind plants. 

 

 

Figure 1. Geographical area used in the ensemble sensitivity analysis experiments. A matrix of 
199 by 199 horizontal points with a spacing of approximately 4 km between points was overlaid 
on the Washington-Oregon domain for the experiments. The color shading depicts the terrain 
elevation (m) on the scale of the model grid. The white boxes denote the forecast target areas for 
which the forecast metric (80-m wind speed) was calculated.  
 

The Ensemble Sensitivity Analysis (ESA) approach uses data generated by a set (ensemble) of 
perturbed numerical weather prediction (NWP) simulations for a sample time period to 
statistically diagnose the sensitivity of a specified forecast variable (metric) for a target location 
to parameters at other locations and prior times referred to as the initial condition (IC) or state 
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variables. The ESA approach was tested on the large-scale atmospheric prediction problem by 
Ancell and Hakim 2007 and Torn and Hakim 2008. ESA was adapted and applied at the 
mesoscale by Zack et al. (2010a, b, and c) to the Tehachapi Pass, CA (warm and cools seasons) 
and Mid-Colombia Basin (warm season only) wind generation regions. 

In order to apply the ESA approach at the resolution needed at the mesoscale, Zack et al. (2010a, 
b, and c) developed the Multiple Observation Optimization Algorithm (MOOA). MOOA uses a 
multivariate regression on a few select IC parameters at one location to determine the 
incremental improvement of measuring multiple variables (representative of the IC parameters) 
at various locations. MOOA also determines how much information from each IC parameter 
contributes to the change in the metric variable at the target location. The Zack et al. studies 
(2010a, b, and c), demonstrated that forecast sensitivity can be characterized by well-defined, 
localized patterns for a number of IC variables such as 80-m wind speed and vertical temperature 
difference.  

Ideally, the data assimilation scheme used in the experiments would have been based upon an 
ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-
Colombia Basin sensitivity patterns in the previous studies. However, the use of an EnKF system 
at high resolution is impractical because of the very high computational cost. Thus, it was 
decided to use the three-dimensional variational analysis data assimilation that is less 
computationally intensive and more economically practical for generating operational forecasts.  

There are two tasks in the current project effort designed to validate the ESA observational 
system deployment approach in order to move closer to the overall goal: 

(1) Perform an Observing System Experiment (OSE) using a data denial approach which 
is the focus of this task and report. 

(2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-
Colombia basin region. The results of this task are presented in a separate report. 

The objective of the OSE task involves validating the ESA-MOOA results from the previous 
sensitivity studies for the Mid-Columbia Basin by testing the impact of existing meteorological 
tower measurements on the 0- to 6-hour ahead 80-m wind forecasts at the target locations. The 
testing of the ESA-MOOA method used a combination of data assimilation techniques and data 
denial experiments to accomplish the task objective.  
 

 2. Methods and Configuration 

This section describes the configurations and methods used for analysis, data assimilation, and 
modeling.  

 2.1  ARPS Model 

The Advanced Regional Prediction System (ARPS; Xue et al. 2000, Xue et al. 2001), version 
5.2.11, was used employing for the simulations in this study. The model domain (shown in 
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Figure 1) included 199 x 199 x 35 points with a horizontal grid spacing of 4 km. The average 
vertical spacing between levels was 500 m with higher resolution in the boundary layer to better 
resolve turbine-level winds. The grid was centered in the Mid-Columbia Basin at 45.56 N 
latitude and 120.98 W longitude.  

The ARPS model was configured to use a 6 seconds long and 3 seconds short time step to ensure 
the numerical stability. No convective parameterization was used. A 1.5 order turbulence kinetic 
energy (TKE) scheme was used to calculate the mean kinetic energy per unit mass associated 
with eddies in turbulent flow. Simplified surface radiation physics, a forth order advection 
scheme, and the Lin (et al. 1983) ice microphysics scheme were also used. 

Twenty four hour forecasts were executed twice a day at 0000 UTC and 1200 UTC for 44 days 
during the warm (1 May – 20 June 2007) and 51 days during the cool (1 January – 20 February 
2010) season. 

 2.2  Description and Configuration of ESA and EnKF Methods 

ESA and the ensemble Kalman filter (EnKF) were the key methods used to evaluate forecast 
sensitivity in this study. These methods rely on a sample of ensemble members to determine the 
correlation of perturbed initial state variables and impact on the target location metric variable. 
The ESA approach uses data generated by a set (ensemble) of perturbed NWP simulations for a 
sample time period to diagnose the sensitivity of a specified forecast variable (metric) for a target 
location to initial condition (IC) state variable(s) at other locations and prior times.  

Ideally, the data assimilation scheme used in the experiments would have been based upon an 
ensemble Kalman filter (EnKF). EnKF would have been more consistent with the Mid-Colombia 
Basin sensitivity patterns diagnosed using ESA in the previous studies. However, the use of an 
EnKF system at high resolution is impractical because of the very high computational cost. Thus, 
it was decided to test the impact of assimilating observations using an economically practical 
data assimilation system (described in Section 2.4.1) that could be used to generate operational 
forecasts. For example, the three-dimensional variational analysis data assimilation method used 
in the forecast experiments required a total of 4,608 computer processing units (CPU) hours per 
each approximately 45 day experiment period as compared to the estimated 221,184 hours an 
EnKF data assimilation system would have used for the same period. To use an EnKF at 4-km 
horizontal resolution for making a single one day real time operational forecast for the Mid-
Columbia Basin region would take 9,216 CPU hours, making it impractical for operational use.  

 The forecast metric (F) was defined as the average wind speed 80-m above ground level (AGL) 
over the target areas shown in Figure 1. The forecast sensitivity calculation is not restricted to the 
same variable used to define the forecast metric. Sensitivity values were calculated and evaluated 
for the thirteen IC state variables listed in Table 1 which includes the average 80-m wind speed 
AGL. The IC state variables can be grouped into three categories: (1) Single level sensitivities, 
which include wind speed at various levels and 2-m temperature, (2) vertical wind shear, and (3) 
vertical temperature gradient. The wind shear and temperature gradient were computed for 
various layers from near the surface to a level of 2-km AGL (Zack et al. 2010a, b and c). 
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Table 1. Thirteen IC state variables used in the evaluation of forecast sensitivity. 

Wind Speed Related

80-m AGL wind speed  

250-m AGL wind speed  

1.5-km above mean sea level (AMSL) wind speed 

3-km AMSL wind speed  

Wind Shear Related 

10-m to 80-m AGL wind shear  

80-m to 500-m AGL wind shear  

500-m to 1-km AGL wind shear  

Temperature Related 

2-m AGL temperature  

2-m to 80-m AGL temperature difference  

80-m to 1-km AGL temperature difference  

80-m to 500-m AGL temperature difference  

500-m to 1-km AGL temperature difference  

1-km to 2-km AGL temperature difference  

 

The ensemble of NWP simulations is produced by starting with a single initial state at the 
beginning of the analysis period and introducing statistical perturbations into the initial and 
lateral boundary conditions. For subsequent simulations, the initial state is a combination of the 
predicted and observed state. This process generates a set of simulations that differ from each 
other due to the perturbations. The number of simulations must be large enough to produce a 
statistically significant sample for the sensitivity calculations. Zack et al. (2010 a, b, and c) and 
other past studies (Torn and Hakim 2008) have used 48 or more ensemble members for large-
scale ESA applications  

The evaluation of simulation "spread" or differences between individual members of the 
ensemble was accomplished using EnKF (Houtekamer and Mitchell 1998; Evensen 2007). The 
EnKF attempts to balance the predicted and observed state of the atmosphere by estimating the 
likelihood of each state at any given time over the entire set of simulations in the ensemble. The 
EnKF assumes that model errors follow a normal Gaussian distribution in order to determine the 
most probable state of the atmosphere.  
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The forecast error was assessed using the time-dependent spread and deviations obtained from 
the ensemble state with that of the observed state. Ensemble members were allowed to integrate 
forward in time while the EnKF monitored the spread in the ensemble. The EnKF assessed 
predictabilities (likelihood of occurrence) of the variable of interest for the target area by 
monitoring the change in the spread of the NWP ensemble. 

 2.3  MOOA 

The MOOA is a standard multivariate regression using a few select IC parameters at one 
location. The goal of using this method was to determine the incremental improvement of 
measuring multiple variables (representative of the IC parameters) at various locations and how 
much information from each IC parameter contributed to the change in the metric variable at the 
target location. 

The MOOA determined the significance of each variable observed at several locations of 
interest. It is also able to help determine the incremental improvement in the forecast in that, 
given one observation, it could help determine how much value there is in adding a second 
observation of a different parameter at the same location. It is important not to assimilate 
redundant information into the model state when there is little value in adding a second 
observation. Three variables that showed high average coefficient of determination (R2) for 
average sensitivity values during the 47-day analysis period from previous research by Zack et 
al. (2010 a, b, and c) were chosen for the MOOA analysis at the location of the highest average 
R2 value. The IC variables were: 80-m wind speed, 10-m to 80-m wind shear and 2-m to 80-m 
temperature gradient. 

 2.4  Data Assimilation Methods and Configuration 

There were two assimilation systems used in the experiments: (1) a three-dimensional variational 
analysis scheme (ARPS 3DVAR) and (2) the Bratseth (1986) ARPS Data Assimilation System 
(ADAS) analysis scheme. An experiment using an incremental update analysis (IAU) scheme in 
ARPS was also used in conjunction with the 3DVAR assimilation system. Table 2 provides a 
comparison of the pros and cons of the data assimilation schemes used. 

Table 2.  Comparison of the pros and cons of the data assimilation schemes used  

Method Pro Con 

3DVAR Can add information in areas where no 
observations are taken using constraints 
and gradient solutions 

Can over fit the observation and can have 
unrealistic estimates where observations are 
not taken 

ADAS Only the model state near the 
observation location is impacted 

Cannot estimate the model state in location 
where observations are not taken, no room for 
dynamic constraint 

3DVAR 
coupled with 
IAU 

Can slowly bring in observations over a 
period of time to limit imbalances 

Observations may not be valid over a window 
and may create imbalances if atmospheric 
conditions change quickly over time 
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A brief description of the assimilation methods and how they were used in the experiment is 
given in the following sections.  

 2.4.1  ARPS 3DVAR 

A three-dimensional variational analysis method was used for a majority of the experiments. The 
ARPS 3DVAR (Xue et al. 2003) package consists of a cost function in which the solution seeks 
the most likely balance between a background (first guess) state, measurements of the observed 
state of the atmosphere, and any defined dynamic constraints that can add continuity and balance 
to the final analysis state. Mathematically a “cost function” is designed to select the best solution 
from some set of numerical relationships. This solution is achieved by a weighted summation of 
several different terms, one which includes the influence of the background, one which includes 
the influence of the observations and a term that includes the dynamical constraints. When 
combined ideal balance and weighting is achieved when the summation of these terms produces 
the lowest possible value. In Equation 1, x is modified to produce the lowest value of f(x) at each 
grid point. The solution then becomes x which achieves the lowest value of f(x). 

     332211)( xxwxxwxxwxf                                               (1) 

The ARPS 3DVAR package reads in observations and a first-guess model state, both with user 
defined estimated error values. The first-guess field or background state can come from an initial 
sounding or previous model forecast (as used in this project). The observed and background 
errors allow the software to estimate what sources of data are reliable and should be used to 
produce a final analysis state. The use of dynamic constraints (to introduce smoothing, adjust 
divergence, etc.) helps produce a balanced final analysis state. These terms in the cost function 
help reduce noise or large scale phase errors from being resolved in the analysis state.  

The ARPS 3DVAR package solves the cost function using an iterative pass-by-pass approach. 
Each data source can be assimilated along with other observations that are on a similar 
representative length scale. For instance, upper air observations are usually representative of the 
atmospheric state over several hundred kilometers, while a surface level observation may only be 
representative over 10-50 km depending upon the observation density. The vertical and 
horizontal scales of influence or spatial distance at which the observation can impact the model 
state, are commonly decreased from the first to second and following passes. Information about 
the observational increment is spread to neighboring gridpoints through the use of a recursive 
filter and the user specified length scales. The dynamical constraints can also be applied on a 
pass-by-pass basis.  

Meteorological tower observations were assimilated in one analysis pass without any additional 
data. Information from each observation was spread to neighboring gridpoints using four 
recursive filter passes using a length scale of 75 km in the horizontal and two grid points in the 
vertical. These length scales were chosen by performance several assimilation experiments to 
make sure observations only impacted areas located close to the observation location. Only a 
smoothing function was applied during all the assimilation runs except for the divergence 
constraint run in which the divergence function was also applied. For all experiments, the 
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background state was obtained from the North American Mesoscale (NAM) model analysis. 

 2.4.1.1  3-D Divergence Constraint  

Within the ARPS 3DVAR data assimilation package, there is an option to employ a 3-D 
divergence constraint. The 3-D divergence convergence constraint was applied to reduce model 
imbalances in first few hours. In meteorology, mass divergence or convergence is the condition 
characterized by the uniform expansion or contraction a parcel of air where mass is conserved. 
Mass divergence or convergence associated with the observed wind data can produce imbalances 
in the model in areas where observational information is missing. In the ARPS 3DVAR software, 
the amount of mass divergence or convergence function is controlled by a mass divergence 
constraint equation derived from the mass continuity equation that is imposed on the analyzed 
wind field (Gao et al. 1999, 2004). The amount of mass divergence allowed in the model is 
controlled by weighting coefficients in both the horizontal and vertical. The weighting terms 
were set to different values and experiments (not all shown in this report) were conducted to 
allow for the testing of the impact of divergence on the forecasted state, similar to Hu et al. 
(2006).  

 2.4.1.2  Modified Observation Spatial Correlation 

As discussed in Section 2.4.1 (ARPS 3DVAR), the horizontal and vertical impact of an element 
of measurement data (e.g. 80-m wind speed and direction data from a site) is controlled by a user 
specified radius of influence that is representative of the atmospheric scales of the observations. 
This radius of influence determines to what spatial extent an observational value will impact 
neighboring grid points within the model state. A large radius of influence tends to spread 
information out farther distances, while smaller values limit the impact of the observation on the 
atmospheric state to the grid points close to the observation location. This information is spread 
evenly (i.e. isotropically) away from the observation location through the use of a recursive 
filter. The recursive filter determines the shape and spatial extent of the analysis increment (or 
observational impact). This is achieved by adding forward and subtracting a backward moving 
weighted function which is initialized using a previous value to the right (or left) of the grid 
point from the observation point.  This function achieves the same effect as a painters brush, 
spreading a small amount of paint out radially with brush strokes away and towards the initial 
placement of paint. 

Non-isotropic or anisotropic filters can estimate how the observational information impact the 
analysis state based on estimates of observation representativeness and distance away from the 
observation location. It is thought that for the Mid–Columbia region, observations should only 
impact the atmospheric state in locations parallel to the flow and locations of similar terrain to 
where the observation was taken. 
 

Therefore, to estimate the impact of a non-isotropic filter, a pseudo-anisotropic filter was 
designed to determine its impact on the numerical analysis. The pseudo-anisotropic filter differs 
from a true anisotropic filter in that the aspect ratio was subjectively set by the user instead of 
being explicitly estimated by the assimilation system from information about the background 
state. The development of a pseudo-anisotropic filter avoided the need for the development of a 
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complete anisotropic filter software package. The pseudo-anisotropic filter was developed by 
modifying the isotropic filter to include an aspect ratio in the direction perpendicular to the flow 
to limit observational impact to areas in the Columbia Basin where the terrain is more uniform 
and the general atmospheric flow is parallel.  

 2.4.2  Incremental Analysis Update (IAU) 

A set of experiments using the Incremental Analysis Update (Bloom et al. 1996) method were 
conducted in an attempt to control imbalances that may be introduced into the model through the 
data assimilation process. The IAU scheme gradually introduces observational information into 
the model (using a weighting term) over a predetermined period of time to reduce imbalances. 
The process occurs after a numerical analysis is performed and the incremental change (analysis 
increment) from the background to the analysis state has been estimated. The IAU impact on the 
model state can be adjusted with a gain parameter. The gain allows for observations to have a 
larger impact when used during the beginning of a forecast or a pre-forecast spin-up period to 
avoid signal dampening of the analysis increment as the model advances.  

 2.4.3  ADAS Assimilation Package 

A second assimilation package employed for this project was the ARPS Data Assimilation 
System (ADAS). This software package is based on the successive correction method (SCM) 
that converges to optimal interpolation following Bratseth (1986) and Brewster (1996) who 
applied the technique to mesoscale modeling. The method uses an iterative approach similar to 
that of 3DVAR with empirical weighting instead of a cost function. Observation influence is also 
controlled by a radius of influence which can impact the relative weights of the observations and 
background field without the use of a recursive filter. Therefore, ADAS can offer a solution that 
is independent of the techniques used in 3DVAR. 

 2.4.4  Key Settings Used in Experiments 

The following settings were used for 3DVAR. All key parameters are summarized in Table 3. 

1) One analysis pass to assimilate all available data, and then four filter passes per 
analysis pass to develop the isotropic spatial correlations.  

2) A 75-km radius of influence in all but the modified correlation experiment. This 
radius was chosen based on the performance of several sensitivity experiments for 
selected cases. 

3)  A 37.5-km north to south influence was used in the modified (pseudo-anisotropic) 
correlation experiment.  

4) The divergence weighting coefficients were set to zero effectively imposing no 
divergence constraint in all but the divergent constraint experiments. In the 
divergence constraint experiments, both the vertical and horizontal weighting term 
were set to 0.001. For the ADAS experiment that did not use the 3DVAR settings, the 
default settings were used.  

As noted earlier, for all experiments in this study the background state was obtained from the 
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North American Mesoscale (NAM) model. 
 

Table 3. Settings used for the 3DVAR assimilation runs.  

3DVAR Parameter Setting 

Number of Analysis Passes 1 
Data type used on pass Met Towers 
Number of maximum cost function iterations 50 
Number of recursive filter passes  4 
Horizontal Length Scale 75 km 
East to West Horizontal Length Scale modified 
correlation experiment 

37.5 km 

*Vertical Length Scale 2 grid points  
Horizontal divergence constraint weighting for 
divergence constraint experiment 

0.001 

Vertical divergence constraint weighting for 
divergence constraint experiment 

0.001 

Smoothing constraint weighting 0.05 

* For 80-m tower observations, below 80 meters the spacing between two grid points is in the 
range of 50 meters and above 80 meters the spacing is in the range of 100 meters. 

 2.5  Descriptions of Data Denial and Data Assimilation Experiments 

The following sections describe the data used and how the data assimilation was done for each 
simulation experiment.  

 2.5.1  Data Used 

Observed data from six meteorological (met) towers in locations showing varying degrees of 
sensitivity as determined from the ESA results were used for both the warm and cool season 
simulation experiments. The met tower sites selected were Seven-Mile-Hill, Chinook, Vansycle, 
Goodnoe Hills, Wasco, and Kennewick (Table 4). The number of levels and heights varied for 
each met tower site and are summarized in Table 5. When comparing the network of assimilated 
observations to the ESA results, it was estimated that Goodnoe Hills had the lowest sensitivity 
and Chinook had the highest sensitivity to 80-m wind speed at the three target locations. The 
warm season forecasts were verified using tower data located on-site at the wind farms Hopkins 
Ridge, Stateline, and Klondike (1 and 2). Table 6 lists the forecast target locations met towers 
and observation heights for both seasons. BPA was the source for all met tower data. 

For verification of the cool season simulation experiments, data were unavailable from the on-
site towers at the target locations. Therefore, proxy off-site met towers were used for verification 
during the cool season including Hood River (for Klondike), Horse Heaven (for Stateline) and 
Roosevelt. Roosevelt is between Klondike and Stateline. In addition, Wasco and Vansycle met 
towers, which had data available for the entire period, were used for cool season verification. 
Wasco was a proxy for the Klondike location and Vansycle was a proxy for the Stateline 
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location. There was not a reasonable proxy for Hopkins Ridge. The target locations and sites of 
towers used for assimilation and verification are summarized in Table 7 with locations provided 
in Figure 2.  

Table 4. Overview list of assimilated data sites, forecast targets and verification sites. 
Assimilated Data Sites 
(Met Towers) for Warm 
and Cool Seasons 

Forecast Target Sites 
(Warm and Cool Season)  
On-site Met Tower 
Verification Sites for 
Warm Season Only 

Off-site Met Tower Verification 
Sites for Cool Season Only 

SHM: Seven Mile Hill 
CNM: Chinook 
VNM: Vansycle 
GHM: Goodnoe Hills 
WOM: Wasco 
KZM: Kennewick 

HKM: Hopkins Ridge 
SLM: Stateline 
K1M: Klondike 1 
K2M: Klondike 2 

HHM: Horse Heaven (SLM proxy) 
HRM: Hood River (KM* proxy) 
RSM: Roosevelt (SLM/KM* proxy) 
WOM: Wasco (KM* proxy) 
VNM: Vansycle (SLM proxy) 

KM* represents both Klondike 1 (K1M) and Klondike 2 (K2M) 
 
Table 5. List of assimilated data sites and observation heights for both warm and cool seasons. 

Assimilated Data Sites (Met Towers)  Observation Heights (m)AGL) 

SHM: Seven Mile Hill 15.2 30.4 
CNM: Chinook 49.9 
VNM: Vansycle 29.8, 30.8, 44.5,61.3, 62.5 
GHM: Goodnoe Hills 15.24, 30.48 
WOM: Wasco 30.48 
KZM: Kennewick 26.213 
 

Table 6. List of forecast target locations met towers and observation heights for both seasons. 
These on-site met towers were used only for warm season forecast verification. 
Target Locations (On-Site Met Towers) Observation Heights (m AGL) 

HKM: Hopkins Ridge 80.0 
SLM: Stateline 80.0 
K1M: Klondike 1 80.0 
K2M: Klondike 2 80.0 
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Table 7. List of proxy off-site met tower sites and observation heights used as cold season 
verification location. Also listed is the target location associated with each proxy site. 
Off-Site Met Towers Observation Heights

(m AGL)
Representative Target Location  

HHM: Horse Heaven 21.3 SLM 
HRM: Hood River 9.1 KM* 
RSM: Roosevelt 21.3 SLM/KM* 
WOM: Wasco 30.5 KM* 
VNM: Vansycle 62.5 SLM 
KM* represents both Klondike 1 (K1M) and Klondike 2 (K2M) 

Before data assimilation, the met tower data were analyzed for significant errors, such as 
negative values of wind speed, and converted from local to UTC time. The temperature, wind 
direction, and wind speed were then assimilated using ARPS 3DVAR or ADAS at observation 
heights. Additional quality control methods were applied such as buddy checking observational 
data with neighboring grid points and gradients.  

 

Figure 2. Location of assimilated and verification met towers. Met towers from generally west to 
east are Hood River (HRM), Seven Mile Hill (SHM), Wasco (WOM), Goodnoe Hills (GHM), 
Roosevelt (RSM), Chinook (CNM), Horse Heaven (HHM), Kennewick (KZM), and Vansycle 
(VNM).  

 2.5.2  Data Denial and Data Assimilation Experiments 

A total of eight types of simulation experiments were run for the warm season and four types 
for the cool season. Experiments for the warm season of 2007 were performed in the 
following sequence: 

1) Control Run: The control run did not assimilate any met tower data. No numerical 
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analysis was performed. 

2) All Assimilation Run: The observed data from all six met towers were assimilated for this 
experiment. The reason for the experiment was to determine a baseline impact of 
assimilated data from the entire met tower network during the warm season. 

3) High Sensitivity Run: Only observed data from the Chinook met tower, which is in a 
highly sensitive location as determined by ESA, was assimilated for this experiment. The 
reason for the experiment was to determine if an ESA-identified high sensitivity location 
would contribute information to the initial state improving forecast performance. 

4) Low Sensitivity Run: Only observed data from the Goodnoe Hills met tower, which is in 
a low sensitive location as determined by ESA, was assimilated for this experiment. This 
experiment was run to determine if a low sensitivity location would have little impact on 
forecast performance as predicted by the ESA method. 

5) Divergence Constraint Run: An additional experiment was run to assimilate the same six 
met towers used in the 'All Assimilation Run'. A divergence constraint was included to 
adjust the initial mass field so it would be more dynamically in balance. This experiment 
was run in an attempt to decrease the impact of possible dynamical imbalances in the first 
few hours of the model run. 

6) Modified Spatial Correlation Run: For this experiment, all six observed met tower sites 
were assimilated. The aspect ratio of the recursive filter was manually adjusted to create 
an anisotropic spatial correlation which may better represent background error. In this 
way, it could be determined if a forecast is sensitive to the covariance structure (shape) as 
subjectively estimated by regional flow. If there is a correlation between the forecast 
performance and covariance filter type, a more sophisticated assimilation system may be 
required to assess the value of the ESA results.  

7) IAU Run: An additional experiment was performed using IAU with a 5% gain and 15-
minute period of adjustment. The objective of this experiment was to determine if IAU 
could reduce imbalances in the initial state by allowing the model to adjust more 
gradually to the analysis increments while slowly advancing forward in time. 

8) ADAS Run: An experiment was performed using standard ADAS Bratseth data 
assimilation instead of the 3DVAR technique. This run was performed to determine the 
impact of the met tower data on a forecast without using a 3DVAR cost function.  

After running the first four warm season experiments (experiments 1 - 4 above), it became 
apparent that model imbalances that develop during the forecast after assimilating 
observations in the initial state were causing increased forecast error. Therefore, an additional 
four warm season experiments (5 - 8 above) were developed and run to test the impact of 
data assimilation on the forecast error. The 3DVAR data assimilation technique was used for 
all but the ADAS experiment. 
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Four experiments were performed for the 2010 cool season in the following sequence: 

1) Control Run: The control run did not assimilate any data. No numerical analysis was 
performed. 

2) All Assimilation Run: The observed data from all six met towers were assimilated for this 
experiment to determine the baseline impact of the entire tower network during the cool 
season. 

3) High Sensitivity Run: Only observed data from the Chinook met tower, which is in a 
highly sensitive location as determined by ESA (warm season analysis, as only warm 
season was done previously) was assimilated for this experiment. The reason for this 
experiment was to determine if a high sensitivity location could contribute information to 
the initial state that would positively impact forecast performance during the cool season. 

4) Low Sensitivity Run: Only observed data from the Goodnoe Hills met tower, which was 
in a low sensitive location, were assimilated for this experiment. This experiment was run 
to determine if a low sensitivity location would have little impact on forecast 
performance as predicted by the ESA method. 

The cool season experiments 1 - 4 did not exhibit the same initialization problems as the warm 
season runs. Additional time was spent exploring data assimilation techniques that have the 
potential to improve the initialization and forecast for the warm season. Therefore, due to the 
time constraints of the project, the warm season data assimilation technique experiments 5 - 8 
were not accomplished for the cool season. Once significant improvement is made in initializing 
the model for the warm season, the technique could then be further tested by performing 
additional cool season experiments. 

 2.5.3  Verification Methods 

Verification for the 2007 warm season period was performed using the 80-m wind speed AGL as 
the metric variable at the target locations of Hopkins Ridge, Stateline, and Klondike 1 and 2. The 
forecast sensitivity pattern (based on the average R2) of the 80-m wind speed was fairly 
consistent for all three target locations during the warm season. Figure 3 shows an example of 
the similarity between the average R2 of the 3-hour sensitivity regression for 80-m wind speed at 
Stateline and Hopkins Ridge. Therefore, warm season results from Stateline are shown in section 
4 as representative of other target locations.  
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Figure 3. The three-hour average R2 of the sensitivity plots of 80 meter wind speed for Stateline 
(left) and Hopkins Ridge (right) showing similar sensitivity patterns. Both plots show an area of 
elevated R2 values that follow the Columbia River Basin from west to east, denoted by the orange 
(>0.12) shading along the Oregon Washington border. . Locations  from generally west to east 
are, Seven Mile Hill (SH), Wasco (W), Goodnoe Hills (G), Klondike (KM), Chinook (C),) 
Kennewick (K),Stateline (SL), Vansycle (V) and Hopkins Ridge (H) . 

For both the warm and cool season, verification was performed every half hour up to six hours 
and every hour after six hours until the end of the 24-hour verification period. The verification 
software reads in observations at 10 minute intervals and computes the difference between the 
observation and model state at the observation location. The verification software was 
configured to compute the mean absolute error (MAE), root mean squared error (RMSE), and 
bias for wind speed at the observation height over the entire verification period.  

For the warm season, the sample included 44 days with a forecast initialized twice per day which 
yielded a total of 88 forecasts. The warm season sample consisted of fewer days than the ESA 
period due to several days of missing initial condition data. For the cool season, the sample 
included 51 days with forecasts initialized twice each day for a total of 102 forecasts. 

The verification period for the 2010 cool season period extended from 1 January 2010 at 0000 
UTC to 20 February 2010 at 1200 UTC. Verification was employed several sources of data 
including observed wind speed at two previously assimilated tower locations, Vansycle and 
Wasco. For these sites, the observation height closest to the 80-m level was used. A second 
source came from a new network of meteorological towers which became available starting 1 
February 2010. The new met towers provided observations between 10- and 30-m. The three 
new met towers used for verification were Horse Heaven, Hood River, and Roosevelt. Horse 
Heaven is closest to Stateline, Hood River is closest to Klondike (1 and 2), and Roosevelt is in 
between both, but Roosevelt may have representativeness problems due to surrounding 
structures.  

For verification of the cool season simulation experiments, data from the on-site target towers 
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were unavailable, therefore the five met tower locations were used as proxies for the target 
locations for the period. There was not a reasonable proxy for Hopkins Ridge. Because data were 
unavailable for January 2010, the verification from the second source of off-site met tower data 
only includes February 2010. Although verification for all six assimilated towers and three new 
met towers were computed, the results of only a subset of towers are shown in this report (see 
Table 6).  

 3. Factors Impacting Results 
The assimilation of representative observational data into the model is important to establish an 
accurate initial state for the forecast simulations. There were several significant factors that 
impacted the representativeness of the observational data. The factors can be divided into two 
categories: 

(1) Factors related to observations: 

 Unavailability of met tower data from sites representative of the target sites. This was 
a particular problem for the cool season time period. 

 Observations at some locations may be greatly influence by small-scale terrain flows 
making them unrepresentative of the general flow patterns of the region. 

(2) Factors related to the modeling system and data assimilation: 

 Model grid spacing needed to resolve highly localized terrain flows. 
 Dynamic imbalances that occur after data is assimilated associated with the data 

assimilation scheme. 

More details are provided on each of the factors impacting the experiments in sections 3.1 and 3. 

 3.1  Observational Factors 

Observational factors can impact the results because data are used to initialize the forecast model 
and verify model performance at key locations of interest. An important factor that impacts the 
results presented in this study is a lack of observational data at key locations either for model 
assimilation or verification. Other factors include data quality and representativeness of the 
observations of the atmospheric conditions for the surrounding region. Data quality issues are 
defined as significant when they either can be either numerically or subjectively determined to be 
inaccurate. Examples of errors that are considered significant include errors in the magnitude or 
units of wind direction, wind speed and temperature.  

Representativeness errors can occur due to poor siting and/or lack of sensor calibration. These 
errors may result in an observational value at a given location being unrepresentative of 
conditions in the immediate region. In the Mid-Columbia Basin, regions of steeply sloping 
terrain and nearby obstructions can decrease (or increase) the observed wind speed to values 
lower (or greater) than that representative of the overall region. Such data when used either for 
assimilation or verification can bias the actual forecast or forecast verification to a magnitude 
similar of that to the observation representativeness errors.  
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 3.2  Modeling System and Data Assimilation Factors 

In areas such as the Mid-Columbia Basin, small-scale terrain driven flows may not be properly 
resolved by a short-term forecast model but captured by observational sensors. These flows can 
have a negative impact on the forecast because the assimilated data are from observations of 
higher resolution flows than can be resolved by the model. The error caused by the unresolved 
flow can then lead to error in the forecasts when observations of unresolvable structures are 
assimilated. Several techniques have been proposed to counteract model bias during data 
assimilation. One technique developed by Janjić and Cohn (2006) specifically focuses on bias 
corrections due to unresolved scales using a Kalman filter correction technique. A second more 
general technique developed by Mass et al. (2008) directly makes corrections to observations 
while taking into account model bias for a number of different observed variables. These 
techniques highlight the need to assess model bias during the assimilation process to produce a 
more representative set of atmospheric initial conditions and lead to a more accurate forecast. 
While the prior technique is still under development, future projects could easily implement the 
latter more general technique proposed by Mass et al. (2008), in which bias correction are 
applied directly to the atmospheric observations.  

Assimilation of even highly accurate observational data can lead to a decrease in forecast 
accuracy if the assimilation system is not properly tuned to estimate how information from the 
observations should correlate to simulated atmospheric conditions of nearby grid points. The 
distribution of observational information to neighboring grid points must be performed in a way 
such that the assimilation method only influences those areas where a high correlation with the 
observation site is actually present. If the model spreads observational information to areas 
where the observed flow is not correlated to the true atmospheric flow, the model may be thrown 
out of a dynamic balance.  

A dynamic imbalance is usually denoted by a systematic forecast bias in the hours just after 
assimilation, as opposed to other model biases which may lead to a consistent forecast bias over 
all forecast hours. This is most prominent when verifying against a statistically significant 
sample size. This imbalance in the initial atmospheric state forces the model to adjust until a 
dynamically balanced atmospheric state is achieved. This adjustment period is referred to as the 
model "spin-up" period. For a model that is initialized from a numerical analysis instead of a 
previous forecast, a spin-up period is needed for the model to dynamically adjust to flows that 
can be resolvable based on the terrain and model resolution. This tends to occur within the first 0 
to 3 hours of a model forecast run. This period of adjustment is usually denoted by relatively 
high forecast MAE and bias when compared to available observations.  

The influence of the data assimilation system, especially on the 0- to 3-hour forecasts, is a major 
concern for the experiments done as part of this project. Many techniques employed in this study 
have been developed to help the model adjust to observations slowly and to conform to known 
dynamical relationships in the atmosphere in order to reduce initial imbalances and the amount 
of model spin-up.  
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 4.  Results 

The results of this study indicate that imbalances in the initial model state resulting from the 
assimilation process must be controlled before the relationship between forecast performance 
and the location of assimilated met tower data can be addressed.  

The results are presented in several sections. Section 4.1 (warm season) and Section 4.2 (cool 
season) discuss results from the data denial experiments that focus on forecast sensitivity to the 
number and location of the met towers. In Section 4.3, results from the warm season data 
assimilation method experiments are discussed. 

 4.1  Warm Season 2007 

During the warm season period (1 May – 20 June 2007), the Mid-Colombia basin was dominated 
by warm southwesterly onshore flow across the region. The southwesterly onshore flow was 
channeled through the Mid-Columbia Basin as it moved eastward impacting the Klondike (1 and 
2), Stateline and Hopkins Ridge wind farms. Smaller scale regional flows developed from terrain 
induced differential heating and forcing within the basin and surrounding region. These flows 
were smaller in spatial extent than the model grid spacing was capable of resolving and often 
resulted in model imbalances after data are assimilated. This result is consistent with the findings 
of Sharp and Mass (2002) who studied the Mid-Columbia basin region extensively with respect 
to model resolution and flow structure. 

The sample of 24-hour forecasts is similar for each site; therefore, only results from Stateline 
(between the Klondike and Hopkins Ridge wind plants) are shown. Both the MAE and bias 
represent average forecast performance during the entire period and include verification from all 
available forecast runs produced during the period. 

During the control run, which did not assimilate any met tower observations, the MAE of the 80-
m wind speed forecast at the Stateline location decreased from 2 to 1.6 ms-1 between 0.5 and 1 
hour into the forecast (blue line, Figure 4). The decrease in MAE during the first hour is likely 
related to imbalances in the initial state that result in a "spin-up" period. The control run 
maintained an average MAE between 1.6 to 1.8 ms-1 for the first 12 forecast hours. After the 12-
hour point, the MAE varied between 1.7 and 2.1 ms-1 for the rest of the forecast period. 

The forecasts made with all available met tower data had distinctly different 24-hour forecast 
MAEs than the control run (red-orange line, Figure 4). Directly after initialization, the model 
forecast error was much lower than the non-assimilation control run as seen by the 30-minute 
MAE value. The forecast error rapidly increases to exceed that of the control run by the end of 
the first hour. The error continues to increase until the 1.5-hour point and then levels off for an 
hour. The MAE decreases after the 2.5-hour point, converges with the control run MAE between 
the third and fourth hour, and has a similar MAE for most of the remaining 24 hours of the 
forecast.  
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Figure 4. Mean absolute error (MAE) as a function of look-ahead time for twice per day (0000 
and 1200 UTC initialization times) NWP forecasts of 80-m wind speed (ms-1) for the SLM 
(Stateline) wind farm for the warm season (1 May – 20 June 2007) for the control run without 
met tower data assimilation (blue line), the all six Bonneville Power Administration (BPA) 
meteorological tower data assimilation run (red-orange line), assimilation of a high sensitivity 
observation point (yellow line), and the assimilation of a low sensitivity observation point (green 
line).  

The comparison of the control with the all-met tower data assimilation run indicates that the 
assimilation of the met tower data had two noteworthy impacts on the warm season's forecasts: 
(1) adding met tower observations significantly improves the initial state at the verification site 
and 1-hour forecast performance and (2) imbalances introduced into the model state cause an 
increase in forecast error during the spin-up period 1 to 3 hours into the forecast.  

The impact of assimilating a single meteorological tower observation from a high or a low 
sensitivity location (selected using the ESA results) 3 hours prior to the forecasts time was also 
examined. The MAE for the high and low sensitivity location experiments are denoted by the 
green line for low sensitivity and yellow line for high sensitivity in Figures 4 and 5. In general, 
the forecast MAE out to 30 minutes are improved compared to the control by assimilating both 
the high and low sensitively points.  

The MAE for the 0- to 45-minute forecast using data from the high sensitivity met tower was 
lower than the less sensitive met tower. This result suggests that, during the first hour of the 
forecast, high sensitivity observations contribute more value in decreasing forecast error than the 
low sensitivity observations. Also, if dynamical imbalances in the initial model state are masking 
the impact of assimilating observations into the initial state on forecast performance for the 1 to 3 
hour time frame, then there is potential to increase forecast performance if these imbalances can 
be minimized. Another important finding was that assimilating met tower data from just one 
highly sensitive point (yellow line) gave an initial verifications site state about a good as the all 
available met tower observations (red-orange line) but also provided forecasts with error within 
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about 0.1 ms-1 of the control forecasts from the 45 minute to 3 hours forecast period.  

For the 1- to 3-hour forecast period, the control simulations without data assimilation (blue line) 
were generally more accurate than any forecast with data assimilation. All forecasts performed 
similarly from hour 4 through the end of the forecast period. An analysis of these results suggests 
that the assimilated data, while increasing the accuracy of the 0- to 1-hour forecasts, also 
produced imbalances in the model leading to decreased accuracy for hours 1 to 3.  

 

Figure 5. Same as Figure 4 except only shows first 6 hours of the forecast period. 

The support for model imbalance caused by data assimilation impacting the forecast performance 
during spin-up can be further illustrated by examining model bias (Figure 6). The control run has 
the largest (negative) bias at the beginning of the forecast period while the all-met tower data 
assimilation run has its highest bias 1 to 2 hours into the forecast which would be consistent with 
model imbalances introduced by the assimilation of the observations. Additionally, for a single 
assimilated observation the error is greater than the control but less than the all-met tower data 
assimilation run indicating the magnitude of the dynamic imbalances increase with the number 
of assimilated observations.  

To summarize, the assimilation of more observations helps produce a more accurate initial value 
of wind speed at the target location, but the dynamical imbalance overwhelms the model state 
and slowly diverges to a less accurate forecast than the control forecast within the first hour. The 
error of forecasts from runs with data assimilation of observations remains higher than the 
control between hours 1 and 3. Between 3 and 5 hours, the all-met tower data assimilation run 
converges to a forecast error value similar to that of the control run. As discussed in Section 3, 
there are many causes and proposed solutions to this problem associated with data assimilation. 
Section 4.3 discusses the results from additional experiments performed that used different data  
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assimilation methods in an attempt to control the model imbalances caused by data assimilation. 

 

 

Figure 6. Bias (Mean Error) as a function of look-ahead time for twice per day (0000 and 1200 
UTC initialization times) NWP forecasts of 80-m wind speed (ms-1) for the SLM (Stateline) wind 
farm for the warm season (1 May – 20 June 2007) for the control run without met tower data 
assimilation (blue line), the all six Bonneville Power Administration (BPA) meteorological tower 
data assimilation run (red-orange line), assimilation of a high sensitivity observation point 
(yellow line), and the assimilation of a low sensitivity observation point (green line). 

The results from the four initial warm season experiments suggest the impact of assimilating the 
met towers observations tends to decrease the MAE during the first hour but leads to a dynamical 
adjustment period due to model imbalance within the second and third hour. The lower initial 
hour MAE was observed for all three experiments that assimilated the met tower observations. 
The lower initial hour MAE was most pronounced for the all and high sensitivity met tower 
assimilation experiments and less pronounced in the low sensitivity met tower assimilation 
experiment. The benefit of assimilating just one tower in the high and low sensitive assimilation 
experiments was due to the decreased magnitude of model imbalance and adjustment during 
hours 1 to 3. During this period the MAE was only slightly higher than the control simulation 
and much lower than the all-met tower simulation. 

The results were similar at both the Klondike and Hopkins Ridge target locations (not shown). 
Klondike, which is located further west and upstream from the met tower observations sites 
tended to have a slightly lower impact from the met tower observation assimilation than 
Stateline. The Hopkins Ridge target location tended to have a slightly higher impact from the 
assimilated observations because it is located downstream within the prevailing westerly basin 
flow. 
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 4.2  Cool Season 2010  

The cool season period (1 January - 20 February 2010) results showed a much different impact 
from assimilating the met tower observations on forecast performance than what was observed in 
the warm season simulations. There are several factors influencing the cold season results that 
were not present for the warm season simulations:  

 (1) The general flow tends to be weaker, more southerly and more variable in the cool 
season than during the warm season. Also, the diurnally induced differential terrain heating 
is reduced, thereby decreasing the strength of localized circulations. The net result of the 
large and local scale cool season flow interaction is an overall weaker flow within the Mid-
Columbia Basin than during the warm season. The overall weaker flow leads to a shorter 
period of dynamical adjustment within the model.  

(2) Since data from the target regions were not available, proxy locations were used to 
represent the target locations. The proxy locations included the network of observations 
that were assimilated with the forecast verification being computed at the location of the 
assimilated met tower in areas close to the target location. A second network of low-level 
(10- to 20-m) met towers was also used for verification, but observations for this dataset 
were only available during the second part of the cool season. 

(3) The high and low sensitivity locations were selected using the ESA results performed 
for the warm season because no cool season sensitivity study had been performed for the 
region. 

 4.2.1  Verification Using Older Met Towers 

The results from the met tower closest to Stateline, the Vansycle met tower, are presented here 
and used as a proxy for the Stateline location. Observations from the Vansycle met tower were 
available at three separate levels but the level closest to hub height (62 meters) is presented in 
this report. 

The control run forecast MAE of the 62-m wind speed at Vansycle for the cool season period 
(blue line, Figure 7) showed a similar pattern but with different magnitudes from that of the 
warm season results at the Stateline location. The MAE decreased for the first hour from 2.7 to 
2.1 ms-1  during the 0.5- to one-hour time frame. As with the warm season control run, the 
decrease in MAE during the first hour is likely related to imbalances in the initial state and 
resulting spin-up period. After the first hour of the control run, the MAE increased and decreased 
between an MAE range of about 2.1 ms-1 and 2.7 ms-1.  

The forecasts that assimilated all available met tower data (orange-red line, Figure 7) showed a 
significant reduction in the initial error, with MAE of about 1.4 ms-1. Because the met tower data 
assimilated in this run included the Vansycle observation, there was a significant drop in MAE 
and bias (Figure 8) when compared to the control run. This behavior is common when 
verification is performed at the site of observation assimilation. Also, for the all met tower run, 
the impact of assimilating observations was to decrease the forecast MAE and bias (Figures 7 
and 8) compared to the control run during the first 3 hours. After this period, the impact of the 
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observations in the model became more diffuse and the difference in MAE compared to the 
control run decreased.  

The all-met tower cool season bias (Figure 8) is somewhat different when compared to the warm 
season (Figure 6). For the warm season, the all-met tower biases were initially positive and 1.0 
ms-1 closer to zero than the control. The all-met tower and control warm season bias converged at 
about the 2-hour point and remained approximately the same for the remainder of the forecast 
period. In the cool season, the all-met tower bias starts negative (-0.5) and is about 1.5 ms-1 
closer to zero than the control. The cool season bias values again converge at about the 2-hour 
point. After the 2-hour point, the all met tower bias stays mostly negative between -0.5 and 0  
ms-1 while the control bias oscillates around the zero line, staying between -0.5 and +0.4 ms-1.  

 

Figure 7. Same as Figure 4 except for 62-m wind speed (ms-1) for the VNM (Vansycle) met tower 
for the cool season (1 January – 20 February 2010). 

The cool season MAE and bias analysis (Figures 7 and 8) for both the high and low sensitivity 
experiments, show an MAE similar to the control run. This result indicates that, for this 
particular location and period, there was no significant forecast impact due to assimilating met 
tower observations taken at estimated high and low sensitivity areas. The only discernable 
difference is a slight improvement in forecast bias for the first three hours from the high 
sensitivity run as compared to the low sensitivity run. 
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Figure 8. Same as Figure 6 except for 62-m wind speed (ms-1) for the VNM (Vansycle) met tower 
for the cool season (1 January – 20 February 2010). 

 4.2.2  New Met Tower Verification (February Only) 

A second network of observations was used for verification purposes as proxy sites for the wind 
plant locations. These sites are close to the target locations and independent from the assimilated 
observation. Since data from these sites were not available until February, the results only pertain 
to the last 20 days of the cool season period.  

The 10-m level of the Hood River met tower forecast verification of MAE and bias show an 
improvement from the assimilation of data when compared to that of the control run (Figures 9 
and 10). Unlike results presented with the assimilated tower data, the Hood River site initially 
shows a higher MAE and bias from 0.5 to 1 h compared with the control run. After a 2- to 3-hour 
period of adjustment in the model, the assimilation run MAE outperforms the control run by an 
average of about 0.4 ms-1 especially from forecast hour 5 to 15. Although the 20-m Hood River 
MAE and bias showed a similar result between the control and assimilation run, the magnitude 
of this difference is much less (not shown). These results would indicate that the assimilation of 
the entire network of met towers provides an improvement in forecast performance for forecasts 
beyond 3 hours. 
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Figure 9. Same as Figure 4 except for 10-m wind speed (ms-1) for the HRM (Hood River) met 
tower for the cool season (1 January – 20 February 2010).  

 

Figure 10. Same as Figure 9 except for bias.  

Unlike the Hood River results, the Wasco met tower MAE results (Figure 11) showed an 
improvement within the first 2 to 3 hours of the forecast when compared to the control run and a 
decrease in forecast performance from 6 to 12 hours. The improvement initially is on the order of 
0.5 ms-1  and may be due to the proximity of observation locations to the Wasco met tower 
location, similar to the Vansycle results. Also, similar to the Vansycle met tower cool season 



 

 26

results, there is little indication of improvement obtained from the assimilation of met tower data 
from estimated high as compared to low sensitivity areas for either the Hood River or Wasco 
verifications sites.  

 

Figure 11. Same as Figure 9 except for 10-m wind speed (ms-1) for the WOM (Wasco) met tower 
for the cool season (1 January – 20 February 2010). 

 4.2.3  Cool Season Summary 

The cool season results are somewhat mixed from location to location. However, it can be 
inferred that assimilating met tower observations does have a positive impact on forecast 
performance. This result was seen as a direct forecast improvement before 3 hours at the 
Vansycle and Wasco sites and after the first 3 hours at the Hood River site. The overall results of 
the study indicate that the initial model state and forecast hours not impacted by spin up are 
improved when observed tower data are assimilated. However, due to the lack of observations 
during the cool season at the target site, it can only be inferred that these results are relevant to 
the actual target locations. 

Even though there are differences between the cool and warm season results, the cool season 
results are consistent with the warm season conclusions: (1) adding met tower observations 
significantly improved the initial state of the and (2) imbalances are introduced in to the model 
causing an increase in error during the spin-up time. 

 4.3  Additional Runs to Address Dynamic Imbalance from Assimilation 
In order to understand better the impact of assimilating met tower observations on the forecasts, 
four additional experiments were performed for the warm season. The additional warm season 
experiments all involved modifications to the assimilation procedure for runs that used all met 
tower data as follows: 
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1) Divergence constraint 

2) Modified covariance  

3) IAU 

4) Assimilation using the Bratseth scheme within ADAS  

All of these additional runs were chosen to address the hypothesized dynamic imbalance created 
from assimilating observations into the initial model state. 

The results for this section will focus on the warm season Stateline results because the location 
and period is deemed to be most representative of sensitivity values created by the ESA 
technique. As with the original all met tower assimilation run, the dynamic imbalance in the 
initial state impacts the forecast most during the first three hours.  

The imbalance seems to have the largest negative impact on the divergence, IAU, and ADAS 
runs which all have MAE values above 2.5 ms-1 during the first 4 hours of the forecast (Figure 12 
and 13). The IAU run had the worst performance in terms of MAE which may be due to the fact 
that observations gradually assimilated into the model may increase the time needed to dissipate 
the imbalances. However, IAU has shown promising results for other regions and applications 
with higher density data networks, especially when having the model adapt to the analysis 
increment prior to model initialization.  

Other techniques, such as the divergence constraint, may have increased the imbalance since the 
model may not be able to correctly represent the terrain flows partially resolved by the 
assimilated data. Therefore an approximation of the mass continuity constraint on the 4-km grid 
spacing of the assimilation system may have not been appropriate for the region. The Bratseth 
(ADAS) assimilation system had the lowest MAE near the time of initialization, but the 
instabilities with the initial state dissipated slower, causing an increase in the forecast MAE in 
the first 2 to 5 hours of the forecast. 

It is significant to note that forecasts which assimilated data from all the met tower observations 
had the overall lowest MAE for the first 3 hours in the modified covariance experiment. Most 
importantly, the modified covariance run had the second lowest 30-minute forecast MAE which 
was a little higher than the ADAS run, but produced a forecast error significantly less than that of 
the original all-met tower assimilation run. This important result demonstrates that forecast 
performance is directly related (and sensitive) the size of the spatial area that the observations 
impact within the initial model state.  

Additional investigations using different covariance structures may provide further insight on 
how to improve both the location of met tower observations sites based on the ESA technique 
and the impact of data assimilation. The ESA employs an anisotropic analysis increment, similar 
to the pseudo-anisotropic recursive filters in the modified correlation experiment. The results of 
the modified covariance experiment indicate that the ARPS 3DVAR data assimilation system 
used in the experiment cannot estimate with the same detail the areas that can be impacted by the 
observations as the ESA technique recently developed by Zack et al. (2010a, b, and c) . The 
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lower forecast MAE of the modified correlation runs suggests that a technique similar to the 
ESA technique will be needed to validate the sensitivity structure produced by the by Zack et al. 
(2010a, b, and c) ESA technique.  

 

Figure 12. Mean absolute error (MAE) as a function of look-ahead time for twice per day (0000 
and 1200 UTC initialization times) NWP forecasts of 80-m wind speed (ms-1) for the SLM 
(Stateline) wind farm for the warm season (1 May – 20 June 2007) for the control run without 
met tower data assimilation (dark blue line), the all six Bonneville Power Administration (BPA) 
meteorological tower data assimilation run (red-orange line), assimilation with the divergent 
constraint (yellow line), the assimilation with a modified correlation function (green line), the 
assimilation using IAU (brown line), and the assimilation using ADAS (light blue line) using 
observations from the six BPA meteorological towers. 

 



 

 29

 

Figure 13. Bias as a function of look-ahead time for twice per day (0000 and 1200 UTC 
initialization times) NWP forecasts of 80-m wind speed (ms-1) for the SLM (Stateline) wind farm 
for the warm season (1 May – 20 June 2007) for the control run without met tower data 
assimilation (dark blue line), the all six Bonneville Power Administration (BPA) meteorological 
tower data assimilation run (red-orange line), assimilation with the divergent constraint (yellow 
line), the assimilation with a modified correlation function (green line), the assimilation using 
IAU (brown line), and the assimilation using ADAS (light blue line) using observations from the 
six BPA meteorological towers. 

 5. Summary 
Three sets of data denial and assimilation experiments were performed using historical data in 
order to validate the ESA approach for the Mid-Colombia Basin region. The impact of met tower 
observations was examined for locations for which forecasts were predicted to be sensitive to the 
atmospheric state by the ESA-MOOA method developed by Zack et al. (2010a, b, and c). The 
objective of the data denial and assimilation experiments was to determine if the 80-m wind 
forecasts for three target locations were more sensitive to actual met tower observations in highly 
sensitive areas versus areas of low sensitivity with the inference being that meteorological 
observations within the highly sensitive areas would lead to better forecast performance. 

The first set of experiments was performed for the warm season, testing the impact of 
assimilating data at high and low sensitive locations compared with assimilating all available met 
tower data regardless of location. The results indicated that adding met tower observations 
significantly improved the initial state of the atmosphere at the target locations, but the 
experiments also indicated that imbalances were introduced from data assimilation causing an 
increase in error during the first 2 to 3 hours of the forecast.  

The second set of experiments was performed for the cool season using the same type of 
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sensitivity experiments as done for the warm season. The analysis of the cool season results was 
hindered by the fact that met tower observations for the target locations were not available for 
this time period so proxy sites were used for verification. 

The results from the cool season experiments differed somewhat from location to location, 
making it difficult to draw a general conclusion. Part of the reason for this difference was due to 
the fact that off-site proxy met towers had to be used for verification, instead of on-site 
observations. Even with the difficulties caused by not having target location met towers, it is 
reasonable to infer that assimilating met tower observations does have a direct impact on the 
forecasts by improving the initial model state and also forecast performance for the first 3 hours.  

The third set of four warm season experiments was designed to learn more about the impact of 
the data assimilation scheme used to assimilate the met tower observations into the model’s 
initial state. These experiments all involved modifications of the warm season experiment that 
assimilated all available met tower data.  

The divergence constraint, IAU and ADAS experiments did not improve the forecasts. However, 
the additional experiment using a different covariance structure provided further insight into how 
to construct a real-time data assimilation system in order to realize the full benefits from 
observations in highly sensitive locations as predicted by the ESA technique. 

The results from the modified covariance experiment indicate that the data assimilation system 
used in the experiment cannot properly estimate the spatial background covariance with the same 
detail as ESA. The lower forecast MAE of the modified covariance runs suggests there is a direct 
relationship between how the assimilation system determines the impact that an observation will 
have on the initial field and the forecast performance through better estimates in spatial 
covariance structure. Therefore, a technique that can more accurately assess the background 
covariance structure similar to the ESA technique, but that is more computationally efficient for 
real-time forecasting applications, will be needed to validate the sensitivity structure produced.  

The overall results of the study indicate that the initial model state and the first forecast hour are 
improved when observed tower data are assimilated. For the warm season runs this impact was 
most pronounced closer to the initialization time, while for the cool season the improvement in 
the forecast was visible in the first 0 - 3 hours depending on the proxy verification location. This 
indicates that the forecasted atmospheric flow is highly uncorrelated with the impact of 
observations from one location to another location. After the third hour, the impact of the 
assimilated observations is minimal on the forecasts. However, a slight improvement in the 
forecasts with all of the met towers assimilated can be seen as far out as hour 16 in some of the 
forecasts. Due to the lack of observations during the cool season at the target site, it can only be 
implied that results presented here are relevant to the actual target locations. Results also indicate 
that the impact of observations were sensitive to seasonal flow, observation location, and the data 
assimilation scheme. 

Even though there are differences between the cool and warm season results, the cool season 
results are consistent with the warm season conclusions: (1) adding met tower observations 
significantly improved the values of near surface wind speed in the initial model state of the 
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atmosphere at the target locations and (2) imbalances were introduced into the model causing an 
increase in error during the spin-up time. 

The lower forecast MAE of the modified covariance runs suggests that a technique which can 
better estimate background error covariance structures similar to the ESA technique will be 
needed to validate the sensitivity structure produced.  However, the technique will need to be 
computationally efficient enough for real-time applications. Computationally efficient 
techniques, such as a hybrid-3DVAR assimilation method, that can address the need for better 
estimates of background error covariance structures are under development for future use. The 
hybrid method estimates the background error covariance by using a smaller and lower 
resolution ensemble that is similar to the ESA technique but requires less computational 
resources. This technique links the spread from the ensemble to the covariance structure of a 
single high-resolution 3DVAR assimilation system as described by Wang et al. (2008a, b).  

In addition, bias correction techniques such as the Mass et al. (2006) method should be examined 
for future applications where model and assimilation biases are noticeably present. Bias 
correction techniques are computationally efficient and only require a simple bias correction 
applied directly to the observations before assimilation.  This technique can be used independent 
of the assimilation method or numerical model used. It is particularly valuable in regions where a 
numerical bias is prominent as in the experiments for the Mid-Columbia River Basin. Therefore, 
the new hybrid assimilation technique coupled with an observational bias correction method 
offers the potential for short-term forecast improvement in future research projects. 
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